Estimation of PSD Shifts for High-Resolution Metrology of Thickness Micro-Changes with Possible Applications in Vessel Walls and Biological Membrane Characterization
نویسندگان
چکیده
Achieving accurate measurements of inflammation levels in tissues or thickness changes in biological membranes (e.g., amniotic sac, parietal pleura) and thin biological walls (e.g., blood vessels) from outside the human body, is a promising research line in the medical area. It would provide a technical basis to study the options for early diagnosis of some serious diseases such as hypertension, atherosclerosis or tuberculosis. Nevertheless, achieving the aim of non-invasive measurement of those scarcely-accessible parameters on patient internal tissues, currently presents many difficulties. The use of high-frequency ultrasonic transducer systems appears to offer a possible solution. Previous studies using conventional ultrasonic imaging have shown this, but the spatial resolution was not sufficient so as to permit a thickness evaluation with clinical significance, which requires an accuracy of a few microns. In this paper a broadband ultrasonic technique, that was recently developed by the authors to address other non-invasive medical detection problems (by integrating a piezoelectric transducer into a spectral measuring system), is extended to our new objective; the aim is its application to the thickness measurement of sub-millimeter membranes or layers made of materials similar to some biological tissues (phantoms). The modeling and design rules of such a transducer system are described, and various methods of estimating overtones location in the power spectral density (PSD) are quantitatively assessed with transducer signals acquired using piezoelectric systems and also generated from a multi-echo model. Their effects on the potential resolution of the proposed thickness measuring tool, and their capability to provide accuracies around the micron are studied in detail. Comparisons are made with typical tools for extracting spatial parameters in laminar samples from echo-waveforms acquired with ultrasonic transducers. Results of this advanced measurement spectral tool are found to improve the performance of typical cross-correlation methods and provide reliable and high-resolution estimations.
منابع مشابه
Automatic measurement of instantaneous changes in the walls of carotid artery with sequential ultrasound images
Introduction: This study presents a computerized analyzing method for detection of instantaneous changes of far and near walls of the common carotid artery in sequential ultrasound images by applying the maximum gradient algorithm. Maximum gradient was modified and some characteristics were added from the dynamic programming algorithm for our applications. Methods: The algorithm was evaluat...
متن کاملBrain Volume Estimation Enhancement by Morphological Image Processing Tools
Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...
متن کاملImpact of Measuring Devices and Data Analysis on the Determination of Gas Membrane Properties
The time-lag method, using a gas permeation experiment, is currently the most popular method for determining the membrane properties: diffusivity coefcient and permeability coefcient, and from which the solubility coefcient can be calculated. In this investigation, the impact of systematic, random (noise), resolution and extrapolation errors associated with gas permeatio...
متن کاملCorrelating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor
The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes wer...
متن کاملRecent Progresses in Preparation and Characterization of RO Membranes
Reverse osmosis (RO) is a water purifcation technology that uses a semipermeable membrane to remove ions, molecules, and larger particles for the production of drinking water. The frst RO membrane for seawater desalination, wastewater treatment and other applications were made of cellulose acetate. But, the polyamide thin-flm composite membrane that can tolerate wide pH...
متن کامل